
COMS E6998: Advanced Data Structures (Spring’19) Mar 28, 2019

Lecture #9: Cell Probe LBs for Dynamic Range Counting

Instructor: Omri Weinstein Scribes: Weston Jackson

1 Last Time

Orthogonal Range Counting (ORC): return all points (or sum of weights of all points) in a rectangle R:∑
(x,y)∈R

wxy

Previously, we used layered range trees to solve in time:

• Static: space s = O(n lgd−1 n), t = O(lgd−1 n) ∀ d ≥ 2

• Dynamic: tu = O(lgd n), tq = O(lgd−1 n) ∀ d ≥ 2

Fort he static case, we used fractional cascading in the last layer to save one lg factor. We pay lg n over-

head for dynamization, which adds this factor back for both update and query times (via exponential-

blocking/segment trees, as ORC is decomposable). It is possible to do better by exploiting the tree

structure of (static) layered range trees, losing the logarithmic factor only in update time – this yields a

fully-dynamic ORC DS with t̂u = O(lgd n), tq = O(lgd−1 n) via weight-balanced (a.k.a BB[α]) trees1.

Question : Can we have a similar (asymmetric) speedup in either update or query time for d = 1 ?

1D-ORC/ Partial Sums (PSn): Updates are insertions into the number line. Queries ask us to report

all points in some interval [i, j]:

x1 x5 x7 x10

i j

[i, j]

1D ORC is equivalent to the Partial-Sums problem PSn: Our updates just set the index A[i] ← {0, 1}
(or some larger weights in general). For queries, we define PREFIX() function as the following:

PREFIX(i) =
∑
j≤i

A[j]

For QUERY (i, j), we make two PREFIX() calls, and just return:

PREFIX(j)− PREFIX(i)
1See e.g., Sec 3.4 here: https://pdfs.semanticscholar.org/841a/31780b7e8f4de224fac06181321ca2ea807e.pdf

1

Static Case. The static PS problem is almost trivial: we can just precompute the answers! Directly

store B[i] :=
∑

j≤iA[j]. On query, B[i] = PREFIX(i) and thus we can answer in constant time. For

example, if A is the following:

1 0 1 0 0 1 0 0 1 1

Then B would be:

1 1 2 2 2 3 3 3 4 5

The space for precomputing answers is in general O(u) words, where u = universe size, so if u � n,

this is no longer linear space. However, we observe that we can make the space linear (s = O(n)) at the

price of t = O(lg lg u) search time, by precomputing the answers for each of the n keys – We can then

use Predecessor search to get the partial sum up to that key.

Alas, this data structure has heavy preprocessing and cannot be cheaply maintain dynamically, so

the following question remains: how do we maintain this structure when inserting new points?

1.1 Dynamic Partial Sums

The simple idea, essentially equivalent to (vanilla) 1D Range Trees, is to keep a tree where the leaves

point at the array A. Each node in the tree keeps track of the partial sums in its left and right subtrees.

Thus, when we insert a new point x, we just update each node n along the path from root to leaf:

+1

1 0 1 0

+1

+1

1 0 0 0

Clearly, both update and query times of this dynamic data structure are tu = tq = O(lg n). Perhaps

surprisingly, we can do updates significantly faster, while maintaining the same (logarithmic) query time

(which we shall soon see is optimal):

Theorem 1. There exists a dynamic partial sum data structure with:

tq = O(lg n), t̂u = O(
√

lg n)

Main ideas: (1) Delay updates by buffering. (2) Exploit the self-reducibility of PSn

Claim 2. Suppose there exists a data structure DL for PS2L (a smaller array). Suppose it has update

and query time tLu , t
L
q . Then we can design a data structure for PSn using:

tu = O(tLu ·
lg n

L
), tq = O(tLq ·

lg n

L
)

2

Proof. We maintain a tree as before, but each node has fan out of size 2L. Then the total height of the

tree is lgn
L . Each node also maintains the smaller data structure DL.

• INSERT (x): At each node, insert x into small partial sum data structures DL.

• QUERY (x): Traverse tree, query each node for partial sums in children in time lgn
L .

The time to query and update each node is just tLq and tLu , thus the total query and update time is:

tu = O(tLu ·
lg n

L
), tq = O(tLq ·

lg n

L
)

1.2 Buffer Trees

Note that there is room for improvement in our partial sum tree data structure. Our word size is lg n and

key size is L, but we don’t exploit the fact that we can store lots of keys in a single word. (intuitively,

the range tree solution is suboptimal in the sense that when it performs an update, it inserts w bits (a

key) into ∼ w levels of the tree, i.e., only a “single bit on average” to each layer, whereas each node of

the tree can store w bits of information, hence intuitively the “bandwidth” is w2 bits). Indeed, we can

improve on this using Buffer Trees:

x8 x9 · · ·

x3 x5 x6 · · ·

· · · · · ·

x1 x2 x4 x7 · · ·

· · · · · ·

• Build a binary tree on top of the 2L-sized array. Keep a buffer at each node of size w = lg n. ∀ node

∈ DL maintains a buffer of most recent n Θ(wL) updates (indeed, note that a key in this subtree

requires only L bits to describe, which is the key point we are leveraging here). If the root buffer

is not full, just insert into the buffer.

• INSERT (x):

(1) If current node buffer is not full, insert x into the buffer (do not reflect this new key in the

partial sums of the left and right subtrees).

(2) If current node buffer is full, flush the buffer and distribute the updates to the children. Re-

compute partial sums of both children (O(1)). Recurse if necessary.

• QUERY (x):

Traverse the tree and collect the partial sums + buffers at each node. Traversing the tree takes

time lg(depth DL) = L, thus total search time in the original tree is:

tq = O(tLq ·
lg n

L
) = O(L · lg n

L
) = O(lg n)

3

Amortized insertion analysis:

Cost(tLu) = O(1) + Amortized Cost (flushing)

The cost of flushing a buffer is O(1) and the buffer flushes only with O(Lw) frequency. A single inserted

key cannot trigger more than L flushes total when going down the tree. Thus the amortized cost is:

O(L
2

w):

Cost(tLu) = O(1) +O(
L2

w
)

To calculate the overall amortized cost in the original tree:

tu =
lg n

L
(O(1) +O(

L2

w
)) =

lg n

L
+
L lg n

w

Choosing L =
√
w and using w = O(lg n):

tu = O(
√

lg n)

OPEN: Is this optimal? It is conjectured that tu = o(
√

lg n) =⇒ tq = ω(lg n).

2 Lower Bounds: Chronogram Method

Theorem 3 (FS ’89). For all dynamic data structures for PSn, tq ≥ Ω(lgwtu n). This implies that:

max{tu, tq} ≥ Ω(
lg n

lg lgn
)

Idea 1: Do a series of random insertions ∈R {0, 1} into random locations of array A, and then perform

a random query. The high-level approach is to show that after n random updates to A, a random PSn
query q ∈R [n] must read a lot (∼ lg n) memory cells.

To this end, divide the n random updates into geometrically decaying epochs Uk · · ·U1:

Uk = u1 u2 u3 · · · · · · Ui = · · · U1 =

In each epoch |Ui| = βi, where β = (tu · w)3 and k = Θ(lgβ n). We then insert βi random updates into

evenly spaced locations:

∀j = 1...βi, A[j · n
βi

] := uj

where uj ∈R {0, 1}. For example:

• U1 updates A[0nβ], A[1nβ], A[2nβ] · · ·

• U2 updates A[0 n
β2], A[1 n

β2], A[2 n
β2] · · ·

• Uk updates A[0 n
βk], A[1 n

βk], A[2 n
βk] · · ·

etc. Remember that the updates are processed from Uk → U1.

4

Claim 4. Geometric decay reduces a dynamic problem on n updates to roughly lg n independent state

problems.

Claim 5. The only memory cells in the data structure that reveal substantial information about Ui are

cells written during that epoch.

Let D(Ui) be the memory state of the data structure after epoch Ui. Let Ai := the set of memory

cells last written during Ui. This is equivalent to a partition of the memory state into lg n colors. For

example if we denote Ai as red (r), Ai−1 as blue (b), Ai−2 as green (g):

D(Ui−2) = r b r b r r r b g r

The idea is that a certain number of registers Ai for epoch Ui must be queried to reflect the events

from epoch Ui. To show this, consider how many bits of information about Ui can be revealed by the

past and future epochs:

• Past A>i: These reveal no information about Ui because past updates are independent in that they

happened beforehand.

• Future A<i: These are not necessarily independent from Ui. Its possible a memory cell in the future

copied some memory cell that was written during the epoch Ui. But considering that the number

of updates decays geometrically, very few cells should be written in the future.

Calculating the number of cells that can be written after Ui

i−1∑
j=1

|Uj | · tu · w =
i−1∑
j=1

βj(tuw)

≤ 5βi−1 · tuw Since βj is decating

<< βi = |Ui| Since βi = (tu · w)3

Lemma 6. For large epochs (any epoch with size > a small constant), we have that:

Eq,U [|D(q) ∩Ai|] ≥ Ω(1)

when D(q) reads tq memory cells on query q

Note that this implies the total size of the data structure over random query is at least:

Eq,U [|D(q)|] ≥
k∑
i=1

E[|D(q) ∩Ai|] Ai are disjoint

=

k∑
i=1

Ω(1)

= Ω(lgβ n)

Proof. Assume for purpose of contradiction that the Lemma is false, and there is an epoch where

Eq,U [|D(q) ∩ Ai|] = o(1). Let epoch Ui be this epoch. Then 99% of partial sum queries q ∈ [n] do

5

not read cells Ai. Consider all other epochs fixed. Alice’s input is all epochs Uk · · ·U1, while Bob’s input

is all epochs except for Ui. We construct an impossible compression scheme such that we can encode βi

random updates in < βi bits.

Alice Bob

Input Uk, Uk−1, · · · , Ui, · · ·U1 Uk, Uk−1, · · · , (?), · · ·U1

Idea 1: Alice sends Bob all updated contents A<i = o(βi).

Idea 2: Alice sends parity ∈ {0, 1} for 1% of queries that touch Ai.

Decoding: Bob simulates his data structure for epochs Ui+1 · · ·Uk to get cells A>i. Bob then updates

his data structure with the contents of A<i from Alice. The only cells Bob doesn’t know are Ai. Bob uses

parity of queries from Alice (for 1% of queries that touch Ai) and existing data structure to reconstruct

the partial sums for any new query.

Complexity: The size of Alice’s first message is the number of cells written by epochs U1 · · ·Ui−1
which can be encoded in ≤ βi

4 bits. The size of Alice’s parity messages are:

lg

(
βi

βi/100

)
≈ βi

lg 100

100
<
βi
4

Thus, the total size of Alice’s messages is βi
4 + βi

4 < βi. This is a contradiction, as the encoding should

be at least βi.

6

