
COMS E6998-8: Advanced Data Structures (Spring’19) March 21, 2019

Lecture 8: Orthogonal Range Searching

Instructor: Omri Weinstein Scribes: Evan Ziebart, Mark Dijkstra

0.1 Plan for this Lecture

• Wrapup from last lecture

• Orthogonal Range Counting (ORC)

• Range Trees (RTs)

• Layered RTs

• Fractional Cascading

0.2 Wrapup (1 + ε, r)ANN

We have shown a trade-off between space and time complexity

• can do s = nO(1/ε2) and t = O(1) (optimal)

• can do s = n1+δ and t = nδ (optimality not proven)

In [PTW ’10], a technique called ”Cell Sampling” is used to show s ≥ n1+Ωε(1/t). So, if t = O(lgn), there

is no improvement. The best we can prove is t ≥ Ω(lg(n)
lg(swd/n)) ≈ Ω(lg(n)

lg(lg(n))) (with d = lg(n), s = n,

w = lg(n)). More on cell sampling to come!

1 Orthogonal Range Searching (ORC)

1.1 Problem Statement

Goal of d-dimensional ORC (dD − ORC): Preprocess n points x1, . . . , xn ∈ Rd such that given a box,

[x1, y1]× [x2, y2] we can either filter, report, or count the number of points in this box. (For this lecture

we focus on counting them)

1

The decision version of this problem is to return whether there exists a point in the box. Applications

include computational geometry and spacial databases.

Recall that the fastest query time for NN is nδ which is bad. Good news is that range queries are

much easier than NN queries: (lgλ(n)) and for d ≤ 10 it is actually only poly-logarithmic.

1.2 Sample Query

Find all female employees of Walmart who have been hired between 2006 and 2016 with salary between

$77,000 and $230,000. This would help Walmart potentially estimate market size.

• Each axis represents a feature of the data (i.e. salary, year, etc)

• Query just specifies ranges on these axes (x-range, y-range, binary ranges, for example)

1.3 1D ORC

Given a 1D line of integers x1, . . . , xn and a range query [a, b], count the number of points in the range.

2

Static DS: A first idea is to store with each element how many elements are less than it. Then, the

query consists of finding the number of entries less than the successor of a and subtracting this from the

number of entries less than the predecessor of b: result = Pred(b).elt − Succ(a).elt (ie: we can use a

Predecessor DS from earlier in the class). This is s = O(n), t = O(lg(lg(n))). However, this only works

for a static data structure and does not generalize nicely for higher dimensions.

Dynamize with BSTs: This gives s = O(n), t = lg(n) and is fully dynamic. Augment the non-leaf

nodes to store the range sums. Need to traverse a single path to leaf on query and update. However, this

still doesn’t generalize well to higher dimensions. For that, we will introduce a new DS called a Range

Tree.

2 Range Trees (RTs)

We will show the 1D case, then talk about the 2D case to see how it can generalize to higher dimensions.

2.1 1D Version

Place all keys into a BST. Augment each internal node v ∈ T to store the min, max, and number of nodes

in left and right subtrees. To query the DS, run a predecessor search on b and a successor search on a,

both starting at the root. The node where the searches diverge is the LCA of the desired subrange. To

get the range itself, continue the searches down the tree. Anytime the predecessor search on b follows a

right child, count the nodes in the left subtree. Symmetrically, anytime the successor search on a follows

a left child, count the nodes in the right subtree. Also count both leaves in the searches.

A Range Tree built on top of the 1-d dimensional problem.

3

2.2 2D Version

We will take advantage of the Cartesian product structure of higher dimensional spaces.

1. Project X coordinates onto the axis, then run a range tree on the projection of x. We count

everything within the first dimension query, so this means there are no items outside of the x-range

in our result; however, there may be items outside of our y-range.

2. Project y coordinates of the resultant trees from the set constructed above. Now we will do a range

search on the y coordinates. We do this by building a new range tree for all nodes of the previously

built range tree for the x dimensions.

Thus: Build 1-D range tree on x-coordinate of point set P =
{

(x, y)
}
∈ R2

For every internal node v ∈ Tx (corresponds to x-range [v1, v2]) build a 1-d range tree on the {Py|(x, y)←
P, x ∈ [v1, v2]}
We build a y-range tree on top of all nodes that correspond to an x-range we are interested in. This will

give us the box that we are interested in querying.

query time = O(lg2n)

S = O(nlgn) (each tree appears in at least lg(n) trees).

In higher dimensions

t = O(lgd(n))

S = O(n ∗ lgd−1(n))

These can be shown inductively.

Is this optimal?

Intuitively there is room for improvement, because we perform the same predecessor query on y ∀ y-Range

trees along the search path for all of the internal nodes in the x-Range tree. Thus, we hope to be able to

re-use searches.

4

The solution is cross linking, which is a special case of fractional cascading.

3 Layered Range Trees

3.1 Cross-Linking

Consider:

We have k arrays, and want to perform predecessor query q on each of them.

A naive method has us calling Pred(q) on each (t = O(k · lg(n))). Better is to store pointers in each

element to its predecessor in the array below. Now, just perform the query on the first array, then follow

predecessor pointers through the rest of the arrays. This improves the runtime to t = O(k + lg(n)). This

technique of adding pointers to the elements in the arrays is called cross linking.

There is 1 bug in the above scheme: it only works when the range of each array is a superset of the

range of the array below it (Ai+1 ⊆ Ai∀i). We will show that this is always satisfied in the construction

of a range tree. Later, we will show the method by which generalized fractional cascading gets around

this bug.

5

3.2 Constructing LRTs

Layered Range Tree

Cross-linking makes the LRT work. If we have 2 dimensions x and y, store a list of corresponding y-coords

at each range node in a RT over x. Because of the structure of the tree, it is guaranteed that a lower

array will be a subset of a higher one. This means the arrays along a path from root to leaf can be

cross-linked. Moreover, this will generalize to higher dimensional spaces.

Analysis

• 2D: t = O(lg(n)) and s = O(n · lg(n))

• dD LRT: t = O(lgd−1n) and P = s = O(n · lgd−1n)

• In [Chazelle ’95], arithmetic model where this D.S. is optimal, S = O(n·lgd−1n) and t = Ω
((lg(n)

lglg(n)

)d−1)
Open Question: Do there exist higher lower bounds for truly linear space. s = O(n)?

3.3 Dynamization

This seems hard at first because of all the pointers and preprocessing necessary to build a LRT. However,

we can achieve a good amortized time by ”occasionally” reconstructing the DS.

Observation: Range counting/ORC is a decomposable search problem. Recall a search problem is decom-

posable if P (x1∪x2, q = g(P (x1, q), P (x2, q)). This means we can use the Segment Tree from lecture 6 to

dynamize the LRT. In general, if ∃ a static DS P with preprocessing time p(n) and query time ≤ t(n),

then we can construct a dynamic DS (for insertions only) with t̂u ≤ O(p(n)
n · lg(n)). For a LRT, this

means t̂u ≤ O(n·lg
d−1(n)
n · lg(n)) = O(lgd(n)), and t̂q = O(lgd−1(n)).

Next Lecture, we will show for a 2D ORC dynamic DS, max{tq, tu} ≥ Ω(lg2
w(n)).

6

4 General Fractional Cascading

Note that cross linking is not enough in the following case:

The problem is that all the elements in the top array are between two of the elements in the bottom

array. This means a search on the top array gives no information about the bottom array. One possibility

is to merge the two arrays, but this is slow and expensive: t = lg(nk) and s = O(nk2)

Alternately, merge every second element. We say recursively Ai,next := Ai,prev ∪ 1
2Ai−1,next. Then,

|Ai,next| = n + 1
2 |Ai−1,next| = n

2 + n
4 + n

8 + · · · ≤ 2n. this gives S = O(nk) and t = O(k + lgn).

Main benefit: Keep every second element means you can be off by at most one search via a standard

predecessor search; that is, you may not get the correct query off of the initial predecessor query, but it

only takes 1 look over to the right and then you can answer the predecessor query question.

Finally, note that this idea can be generalized to graph DSs as well.

7

