
COMS E6998-8: Advanced Data Structures (Spring’19) April 18, 2019

Lecture Lecture 12: String Matching and Suffix Trees

Instructor: Omri Weinstein Scribes: Garrison Grogan

1 Outline

We will focus on the following topics:

• Pattern matching in strings

• Tries, lexicographic search/library search

• suffix trees and applications

• O(n) time contrustion of suffix trees

There are many applications to today’s data structures.

The main hero of the lecture is the suffix trees.

In general what is our problem?

• Given text T (a huge data base of strings or collection of texts T1, ..., Tk) we want to preprocess

them such that we can answer all sorts of string/pattern matching queries on T .

For example, if we were looking at DNA, we may want to search for the pattern ACCTGA, in this

case |Σ| = 4,Σ = {A,C, T,G}. Many string data applications have come from genomics.

We want a linear construction of our data structure, and O(1) search.

2 Goal

Given a pattern P , we want to find/report/count the occurances of P in T in time O(|P | + occT (P )︸ ︷︷ ︸
=k

).

The dependence on occT (P ) is optimal.

Note there is no dependence on |T |, as the entire text/database is large.

How will we do this?

3 Σ-ary Trie

1 We’ve seen tries before for binary search but they actually came first from string matching.

1Here and in future uses we want our alphabet size |Σ| to be treated as a parameter. It is non-constant. We do this since
lots of datastructures operate by blowing up |Σ|
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A trie is a tree representation of a string, where every node can have a branching factor |Σ|. Each edge

of the tree is lableled with a character of the alphabet. Each node then represents a string on characters.

Formally, a node n represents the string on letters on the edges followed to get to from the root node

to n.

Our alphabet is small, so we can use an array of pointers at each node to point to the subtrees

underneath it.

These tries are solutions to the following warmup problem: Predecessor/Lexicographic search in

T1...Tk. To search, we just follow the query string in the trie until it finishes or falls off. If we fall off the

trie, the string we fell off at must be the predessor. Cleary this takes O(|P |) time.

The use of Σ-ary tries then led to...

4 Suffix Trees

• Idea: A useful way to solve any any string problem is to construct a trie that represents all suffixes

of the string. Ex: T = ”banana” We don’t want one suffix to be a prefix of another, so we append $, a

small character /∈ Σ. To construct the suffix tree, we build each suffix, and insert each one into a Σ-ary

Trie

For the banana example, we construct the following suffixes:

1. banana$

2. anana$

3. nana$

4. ana$

5. na$

6. a$

7. $

which then yields the following tree:
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Now how does this help us?

Well if we are given a pattern P , Checking occurances is easy. We just walk down the tree. For

example ”na” appears in na$ and ana$. However there are few problems with our suffix tree-

1. Our suffix tree requires O(n2) letters of space, technically O(|Σ|n2) since we store arrays of size |Σ|.
This

2. The preprocessing time for our tree is O(|Σ|n2)

3. The query time is O(log |Sigma|)

We can resolve these problems in the following way-

1. Many of our tree nodes have branching factor 1, so we can compress them. An easy fix is to contract

all nodes of branching factor 1 into a single node. This process yields the Compressed Suffix

Tree, hereby denoted as the cST.

Example:

n

|
a

|
$

becomes a single node na$

Claim 1. in a cST, space(cST) = O(|Σ|n), in fact there is a 1 to 1 correpsondence between nodes

and suffixes.

Proof. We will give a brief proof via induction.
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Say we insert ana, either we add a leaf to a current branch in the tree, or we fall off the tree in

the middle of a branch and create a new brancing node. Clearly at most 1 branching node can be

added.

From this we having the following invariant: ∀ new suffixes added (in order), we create ≤ 1 new

branching nodes. Thus we have removed the n2 dependence and our CST.

Now we can still do better, and get rid of the |Σ| factor with the following observation: the cST

still naively stores an array at each node. We want to spend O(|P |) time per node, the minimal

time per node for predecessor search, and have a minimal space trade off. 2

A binary search tree will give O(n) space and O(|P | log |Σ|) search time. We just store a small

BST, lexicographically ordered on the children in the cST.

We can still do better though and apply the more advanced predessor structures we’ve seen in

class in a black box. Using VeB trees and space reduction via hashing we obtain O(n) space and

O(|P | log log |Σ|) search time.

This is still suboptimal however. Using a Tray 3, we can achieve O(n) space and O(|P | + log |Σ|)
query time.4

It is, however, an open problem on doing predecessor search in O(|P |+ log log |Σ|) time.

One application of Trays is ”Library Search”, string sorting on a collection of texts T1...Tk. The

naive algorithm takes O(k|T |) time, but we can do better.

The high level idea is that if has << |Σ| children, we can compress it into a mega node, in a sort of

heavy light decomposition. Doing this we can obtain an algorithm that takes O(
∑k

i=1 |Ti|+log |Σ|) =

O(|T |+ k log ‖Σ|) time, where |T | is the size of all the texts in our library.

Now we know we can solve string sort/patter match and similar problems in linear space and

nearly constant time, but there is still a preprocess time problem. This was the open problem in

string/pattern searching for a long time.

Before getting to that, we must discuss some other useful applications of Suffix Trees:

(a) PM counting/reporting ie, the first k occurances of a pattern in a string.

we can solve this problem in O(|P |+ k) time

(b) Solving the repeated string problem - finding the longest repeated substring.

To solve, we augment the cST with a letter depth counter at each node, which tracks the

number of letters traversed since on that path in the tree since the root node. Then in O(|T |)
time, sweep the trie, and find the string with branching factor ≥ 2 and largest letter depth.

(c) Longest Common Prefix (LCP): Here we find the longest common prefix in our library of

strings T , starting from two indices in T , denoted as LCP (T [i :], T [j :]

Easily, we can do it in O(j − i), but there is an O(1) solution. To see it, note that LCP is

equivalent to a Least Common Ancester query on T [j :] and T [i :]. We just look at the ith

and jth suffix and look at the LCA. The LCA can be found in constant time.

2If we were just checking ∃ of the pattern, we could use hashing, but this doesn’t support predecessor search.
3not covered in this course
4Via Information Theory, it is often possible to separate a multiplicative log factor into an additive one
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(d) Longest Common Substring5 : given T1, T2, how can we do this in linear time? it’s on the

homework.

(e) Document retrieval problem: Given T1...Tk report all occurances of a pattern in each of the

Ti’s. We could do this in O(k|P |) time, building k suffix trees. Ideally, we want the run time

to be instance optimal, proportional to the output size, i.e OPT =∝ |P |+ #matches

If we build a single cST using all of the texts concatenated together, cST (T1$T2...$Tk) and

leveld the ancestor data structure, we can embed a document retrieval query as a LA query

in O(OPT log log |T |).

2. Now we’re still dealing with O(n2) steps in building the cST, essentailly we have an algorithm

problem to generate the cST offline. It turns out that the following two objects suffice to construct

a cST in O(n) time:

(a) Suffix Array

(b) Longest Common Prefix (LCP) Array

The Suffx Array stores indices of all suffixes of T in lex. sorted order, for example banana has the

suffixes, in order,

$ a$ ana$ anana$ banana$ na$ nana$ and when given indices corresponding to their construction,

the suffix array is 7,6,4,2,1,5,3

Suffix arrays can be constructed in linear time, as we will see later.

Our 2nd object, the LCP array is easier to construct. We simply go through the SA, and for

each pair of suffixes in order, store the length of the LCP. In the banana example, the LCPA is

0,1,3,0,0,2 .

Claim 2. the LCPA + SA give us a cST in linear time

Proof. Say we are inductively adding suffixes to the tree in order. The LCP array will tell us

precisely how many letters to jump before inserting the entire string, so we don’t spend time

branching.

Alternatively, there is a recursive algorithm using cartesian trees, not covered in the class.

We still need to construct the LCPA and SA in linear time. The LCPA is much easier, so we will

focus on the SA.

5 Suffix Array Construction

Our goal is ≈ O(n) time construction of the SA.

Try #1: O(n log2 n) expected time. Observation: If we can compare every pair of suffixes in time

f(n), then we can construct the SA in time O(n log(n)f(n)).

Now we need to do f(n) fast.

5continous substring, so no DP solution
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Claim 3. can compare any two suffixes of T in O(log n) randomized expected time using a ”rolling hash”

Karp-Rabin finger printing.

Proof. Now we can check the equality of two suffixes with normal hashing but the worry is that con-

structing hashes of longer suffixes naively takes O(n) time per hash since we have to read the entire suffix

as the key, and we get O(n2) hashes.

But, if we have a hash that is linear with respect to character appending, i.e h(x◦xi) = h(x<i)+h(xi),

we can avoid reading the entire suffix on every new hash. This hashing also allows us to do equality checks.

We pay log n time to do smaller/greater comparisons by doing binary search and using a rolling hash

at each comparision to find the first differing index of the two suffixes in constant time.

Thus we have n log2 n total expected time.

Now to do this in linear time? We use a three way divide and conquer algorithm. This algorithm

runs in time O(n + sort(Σ)︸ ︷︷ ︸
<<n

) ≈ O(n)

The algorithm does the following:

1. sort Σ

2. Partition T into 3 overlapping groups

(a) T0 = 〈T [3i], T [3i + 1], T [3i + 2]︸ ︷︷ ︸
∀i

〉

(b) T1,T0 with a shift of 1 letter to the right

(c) T2,T1 with a shift of 1 letter to the right

Each element of these partitions is dubbed a ”mega letter”, ∈ Σ3. Each partition is of length n/3.

We recursively apply this procedure on 〈T0 ◦ T1〉, and we know that 〈T0 ◦ T1〉 ∈ [Σ3]2/3.

Thus when the call returns we have via radix sort, all suffixes starting in positions 0 or 1 mod 3

sorted.

Radix sort takes O(n) time if the alphabet is constant size, and we have a recurrence relation

R(n) = R(2/3n) + O(n) to construct the SA, which is O(n).

Not forgetting the 2 mod 3 suffixes, we can sort and merge them into the the list from the recursive

call given sorted 0 and 1 mod 3 suffixes, so we just merge all 3 sorted lists and get the SA in O(n)

time.
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