
COMS E6998: Advanced Data Structures Spring 2019

Lecture 10: Dictionary and Hashtable
Instructor: Omri Weinstein Scribes: Shikun Wang, Yimin Hu

1 Overview
In this lecture, we discussed the definition of the dictionary and different approaches to
hashing. We talked about different hash functions and their properties including basic
properties, k-wise independence. We talked about different approaches to using hash
functions in a data structure. The approaches we cover are basic chaining and perfect
hashing. The linear probing and cuckoo hashing will be covered in the next lecture.

2 Application
Data structure for information retrieval and string problems. Examples are

1. Pattern matching in text or DNA strings, file management/organizations.

2. String problems arising in large-scale storage Applications.

The main thing to distinguish is O(1), at most O(log(n)) query time and as close as to
the theoretical bound on space which is linear or O((1 + ε)n) at most.

3 Basics
Most basic Data structure primitive and The dictionary problem:

Definition 1. Preprocess/maintain a set |S| = n with keys x1, x2, .., xn ∈ [U], (n << U)
such that x ∈ S can be retrieved quickly.

Claim 2. The dictionary problem is easier than the Predecessor problem.

1

3 BASICS 2

3.1 Hashing
A natural solution is to use hashing. A randomized mapping h : [U]→ [m], (m << U)
s.t. only few elements collide: min Prh(h(x) = h(y)). Suppose if we already has a good
hash function h with nearly zero collisions ⊆ S and a cheap description, it is an efficient
dictionary.

1. Store description in memory, ∀x ∈ S, store xi in address h(xi)

2. y ∈ S⇒ read description and go to h(y)

3. Analysis: S = O(description) +O(m), t = O(description)

3.2 Truly random hashing
Definition 3. A hash function h is truly iid random if ∀xi : h(xi) ∈iid R such that
Prh(h(x) = h(y)) = 1

m
for some y 6= x.

There are two big problems with this hashing:

1. The description length is too large: O(ulog(n))

2. The number of collisions is too large E [collisions ∈ |S| = n] = O(n2

m
).

In order to address these problems, we introduced the definition of k-wise independent.

Definition 4. A 2-wise independent family of hash function H is defined as ∀h ∈ H
with h[U]⇒ [m] s.t. ∀x, y, Prh∈RH [h(x) = h(y)] ≤ 1

m
.

Example 5. In x, y ∈R 0, 1, x, y, x⊕ y are 2-wise independent.

As a graph explanation, the professor used the graph below. For a 2-wise independent
family of hash functions, it is identical to look at any pair of the columns in the table
and are independent to each other. See Figure 1.

Similarly, the definition of k-wise independent is as followed [2].

Definition 6. A k-wise independent family of hash function H is defined as ∀h ∈ H
with h[U]⇒ [m] s.t. ∀x1, x2, ..., xk, Prh(h(x1) = h(x2) = ... = h(xk)) = O(1

mk)

Example 7. For k-wise independent: h(x) := (Σk
i=1aix

imod(p))mod(m) s.t. a1, a2, .., ak ∈iid
R[Fp] and p is a prime number.

4 LINEAR SPACE 3

Figure 1: Each pair of column are independent

Claim 8. The truly random is an over kill. To get Prh(h(x) = h(y)) = 1
m

, it is enough
to take universal 2-wise independent.

Thus, to solve the two big problems listed, we can take the two approaches as
followed.

1. To get the Pr = 1
m

, it is enough to just take universal 2-wise independent function.
More formally, ∀x ∈ [U] : h(x) := ((ax+ b)mod(P≥|U |))mod(m) by the Definition
6.

2. For the number of collisions, the current hash function has E[collisions ∈ S] =
Θ(n2

m
). A naive solution is to set m = 100n2, then the probability of a collision

is Prh[∃column ∈ |S| < n]. Such dictionary will have space O(n2) which is very
bad, though the time is O(1).

The next problem is how to get a linear space dictionary?

4 Linear Space
Previous methods have a large space requirement. To use only linear space, which
means we have m = O(n), we must handle collisions, for collisions will be sure to
happen in this case.

4.1 Chaining
Chaining method is an implementation we often see. The first step is we use a normal
hash table, with a hash function h maps our keys into corresponding address. The

4 LINEAR SPACE 4

difference is that when a collision happens, we use a linked list to store all the keys that
are being mapped to the same slot. Below Figure 2 [1] shows a chaining hash table:

Figure 2: An example of chaining

4.1.1 Space Complexity

For a slot i, let Ci denote the length of the linked list chain in the slot i. We now
calculate the expectation of this variable:

E[Ci] = Σj[Pr[h(xj) = i]] = Σj[O(1
m

)] = O(n
m

)

Note that by choosing m = O(n), the expected length will be constant, for example we
can let this constant less than 1

10 by choosing some proper m.

4.1.2 Time Complexity

We can prove that the max|Ci| ≤ O(lgn
lglgn

) by balls in bins theorem and Chernoff bound.
As a result, the worst-case time complexity for a query will be O(lgn

lglgn
).

Another interesting fact is that if we have a cache with θ(lgn) elements, we will
have a constant amortized query time.

(Note: Professor had not provided formal proof of above claims during the class,
please see more detail in section 3.1 High Probability Bounds from the reference [2])

4 LINEAR SPACE 5

4.2 FKS Dictionary: Perfect Hashing
FKS hashing consists of two main steps: 1. Choose a 2-wise independent hash function
as first level hashing, 2. For ∀Ci, use hash function h : [Ci]→ [8[Ci]2]. By setting up a
hash table according to those two steps, we now have zero collision on the chains based
on the birthday paradox and Markov.

4.2.1 Space Complexity

For 1st level hash we use a space of O(lgn), which is just a cost for 2-wise independent
hash function. For 2nd level hash, the space is:

E[space] = E[ΣiC
2
i] = n+ E[Σi,j∈SI2

i,j] = E[Σi,j∈SPr[h(xi) = h(xj)]] = n+O(n
2

m
)

Thus, when m = O(n), E[space] is just O(n).

4.2.2 Conclusion

We now have a dictionary with: Space ≤ 4n and Time = O(1)
What can we improve: 1. 1 + ε n space, 2. Not parallel, 3. Can be simpler.

4.3 Alternate method to chaining
1. Linear probing

2. Cuckoo hashing

3. Tabulation

4. Bloom filter

4.3.1 Linear Probing

The idea is, given a hash function h, we try to insert x into h(x), if h(x) is full try
h(x) + 1, h(x) + 2, and so on until a slot is empty. Below Figure 3 shows an example:

It seems linear probing is a bad idea, for ”the rich get richer, the poorer get poorer”.
When long runs of adjacent elements develop, they are more likely to have collisions
which increase their size. Due to the cache locality when the runs are not too large,
linear probing is actually efficient in practice. It is only 10% slower then a normal
memory read.

REFERENCES 6

Figure 3: An example of linear probing

4.4 Next Time
Theorem: For a totally random hash function h with space = O((1 + ε)n) the expect
time complexity is O(1

ε2
). For hash function which is k-independent, k = Ω(lgn) is

sufficient. In [3], we saw k = 5 is enough.

References
[1] https://www.hackerearth.com/practice/data-structures/hash-tables

[2] Erik Demaine. 6.851: Advanced Data Structures, lecture 10
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-851-advanced-data-structures-spring-2012/calendar-and-notes/MIT6851S12L10.pdf

[3] Anna Pagh, Rasmus Pagh, and Milan Ruzic. Linear probing with constant indepen-
dence. In In STOC ’07: Proceedings of the thirty-ninth annual ACM symposium
on Theory of computing, pages 318-327. ACM Press, 2007

	Overview
	Application
	Basics
	Hashing
	Truly random hashing

	Linear Space
	Chaining
	Space Complexity
	Time Complexity

	FKS Dictionary: Perfect Hashing
	Space Complexity
	Conclusion

	Alternate method to chaining
	Linear Probing

	Next Time

