
Omri Weinstein Homework 4 COMS6998, April 30, 2019

Due: May 4th (Saturday), 6pm, submit to courseworks.
You may use “standard” arguments without a formal proof—either cite from class or add one
sentence showing the main idea.

Problem 1: Independence properties of Tabulation Hashing

Recall the definition of Tabulation hashing: Each w-bit key x = x1 . . . xw is partitioned into c
blocks of B = (w/c) bits (characters) each x′1 . . . x

′
c, and hashed into the XOR of c totally random

hash tables : T (x) := T1[x
′
1]⊕ . . . Tc[x

′
c], where each Ti is a random table ∈R [m]2

B .

1. Prove that this hash function is 3-wise independent, that is: for any three keys x, y, z, the
tuple (T (x), T (y), T (z)) is equally likely to get mapped to any value in [m]3.

2. Prove that Tabulation hashing is not 4-wise independent: show that there are key values
x, y, w, z such that their hashes T (x), T (y), T (w), T (z) are not independent.

Problem 2: Cuckoo Hashing

Prove that Pr[Insert(x) to Cuckoo hash traverses a k-length simple path] ≥ 2−O(k), (when we
hash n keys to 2 completely random tables g, h each of size m = (1 + ϵ)n). This is tight by the
argument proved in class (we showed the probability of this event is ≤ 2−Ω(k)).
Also show that the probability that cuckoo hashing fails (i.e. it makes Ω(log n) “hops” when
inserting some key, when starting from an empty table and inserting n distinct keys in a row) is
Ω(1/n) (hint: what is the simplest case in which such event happens? Obviously we have
excluded graphs with long chains, what other cases are there?).

Problem 3: Longest Non-Overlapping Substring

Devise a linear-time algorithm that for a given string S finds the longest substring x such that
there are two positions i, j: SiSi+1 . . . Si+|x|−1 = SjSj+1 . . . Sj+|x|−1 = x and i+ |x| − 1 < j, i.e.
substring x occurs at least twice in S and these two occurences don’t overlap.

Problem 4: Longest Common Substring in linear time

The LCS problem is, given 2 strings a, b, to find the longest (contiguous) common substring of
T1, T2. (e.g., if T1 = “alibabalc” and T2 = “abac”, then LCS(T1, T2) = “aba”). Use suffix trees to
solve this algorithmic problem in O(|T1|+ |T2|) time.

Problem 5: Least Common Ancestor

Consider the (static) LCA problem: Given a binary tree T on n nodes, preprocess it so that for
every pair of vertices u, v ∈ T , we can quickly compute LCA(u, v), that is, the node v of
minimum depth in T , which is an ancestor of both u, v.

1

Omri Weinstein Homework 4 COMS6998, April 30, 2019

1. Consider the following “Range Minimum” problem RMQn: Preprocess an array of length n
so that for any 2 entries i, j ∈ [n], the DS must output the minimum element
x ∈ A[i] . . . A[j]. Show that the LCA problem reduces to RMQn, i.e,., that any (s, t)-DS for
RMQ induces a similar DS for LCA).
(Hint: Euler Tour of a graph may help here).

2. Show how to solve RMQn with O(n lg n) words of space and constant t = O(1) query time.
(Hint: Consider storing, for every entry in the array, the minimum element at distance 2i

from that entry, for every i. How much space does this take? And why does it suffice for
RMQ queries?).

3. For extra credit, show how to reduce the space to linear O(n). To do this, use Indirection +
the important fact that the the resulting RMQ problem has all consecutive entries of the
array A[i] differ from the next/previous entry A[i+ 1] by at most ±1.

4. As an application, show that the LCP problem discussed in class (Given a text T and 2
indexes i, j, determine the longest common prefix LCP (T [i :], T [j :])) can be solved in O(n)
space and O(1) time.

Problem 6: Finding Blobs

Consider the following dynamic problem: given a changing forest T with n vertices, each either
black or white, you are asked to compute sizes of the “blobs” around some vertices under edge
addition/removal and color changes. A “blob” around vertex v is the largest connected
component containing v that consists of vertices of the same color.
More specifically, your algorithm should support the following types of queries:

1. Change(v) — change color of vertex v,

2. BlobSize(v) — return the size of the “blob” around vertex v,

3. Add(u, v) — add an edge between u and v,

4. Remove(u, v) — remove an edge between u and v.

It is promised that at every point of time T is a forest. Design an algorithm for that problem with
linear space, give bounds on its running time. You will get partial credit if your algorithm
supports only Change and BlobSize queries.

2

