
COMS E6998: Advanced Data Structures (Spring’19) Apr 25, 2019

Lecture 13: Dynamic Graph Data Structures

Instructor: Omri Weinstein Scribes: Mia Saint Clair, Qingtian Gong

1 Introduction

1.1 Overview

Today we will start the last topic of the course, which is data structures for graph problems. In this

lecture we will discuss Link-Cut Trees and the ”Heavy-Light” decomposition. Next week we will discuss

Euler-Tour Trees and O(lg2 n) operations for general undirected graphs.

1.2 Motivation

• Online networks (algorithms). Most online networks are highly dynamic. We want to maintain the

structures, properties, summaries, or statistics of a network, such as the spanning forests, distance

information, paths in the networks, or density of components.

• Most basic: reachability/connectivity. We want to maintain the information about connectivity of

vertices, while the graph is changing with insertion/deletion of edges.

• (Approximate) distance of shortest path. Shortest path problem is a challenging problem, especially

when the graph is dynamic.

1.3 Distance Oracles [Thorup-Zwick ’95]

Given a graph, a distance oracle is a data structure to maintain the (approximate) distance of the shortest

path between two vertices u and v.

Given a graph, preprocess it so that you can quickly answer whether two vertices are in the same

component. A basic algorithm for this problem is union-find. Now I want to speed up not just whether

they are in the same component, but also speed up getting the distances. A naive solution for that is to

store all O(n2) answers and query in constant time.

Distance oracle can solve this problem statically. It uses super-linear space s = n1+o(1/k) for k-

approximate distances in constant time t = O(1). Its main idea is to compress the graph into subgraphs

that preserve distances between vertices in k-approximate. Such compressed graphs only exist in undi-

rected graphs. Thus this data structure fails in directed graphs, because there is no such graphs.

2 Link-Cut Trees

Next, we are going to consider dynamic problems in undirected graphs undergoing a sequence of edge

insertions/deletions. Our goal is to get O(lg n) time for forests. Why it is non-trivial? The trees could

be very unbalanced, and finding the root may take Ω(n) time.

1



Today we will see how to solve this unbalanced problem. We will see two ways to do this. The first

way is Link-Cut Trees. Link-Cut Trees solve connectivity and many other statistics in O(lg n) time. Its

goal is to maintain a collection of rooted trees (forest) under the following operations:

• MakeTree(): To make a tree with single node.

• Link(v,w): To make v a child of w. It is an insertion of an edge between v and w, like in a social

network, one person becomes friend with another one. We assume v is always the root of its tree.

• Cut(v): To disconnect v from its parent.

• FindRoot(v): Returns the root of the tree that vertex v is a node of. This operation is interesting

because path to root can be very long. The operation can be used to determine if two nodes u and

v are connected

• PathAggregate(v): To keep aggregating node by node and return any statistics/query like min/max/sum

along the path from the root to v. The major motivation here is to solve network flow problems.

Link-Cut Trees were developed by Sleator and Tarjan. They achieve logarithmic amortized cost per

operation for all operations. Link-Cut Trees are similar to Tango trees in that they use the notions of

preferred child and preferred path. They also use splay trees for the internal representation.

3 ”Heavy-Light” Decomposition

3.1 Definition

The main concept of Link-Cut Trees is very similar to Tango Trees. The key idea is to maintain repre-

sented trees (forest) via decomposition to preferred paths. The represented trees are the original trees.

A preferred child (PC) is a unique child of the last access. Its definition is:

PC(v) :=

{
φ, if last accessed node in Tv was v

w, if w ∈ Tv was the last accessed in Tv
where Tv is v’s subtree. A preferred edge is an edge between preferred child and its parent. A preferred

path is a chain of preferred edges to its maximal length.

Link-Cut Trees then store each preferred path of the represented tree T in an auxiliary tree, which

is a Splay Tree. Nodes in each auxiliary (Splay) tree are keyed by their depth (in the represented tree).

The use of Splay Tree is crucial for analysis. For each node in the auxiliary trees, the left subtree stores

the nodes higher than v in the represented tree, while the right subtree stores the nodes lower than v.

So the root of the preferred path will be the leftmost node of its auxiliary tree.

We also want to store path parent pointers. A parent pointer points to the parent of the preferred

path’s topmost node in the represented tree. Each auxiliary tree has one path parent pointer, and it is

stored in the root of the auxiliary tree. The structure of Link-Cut Trees is illustrated below:

2



Figure 1: Auxiliary trees and the corresponding represented tree

3.2 Operations

3.2.1 Access

Every operation begins with the subroutine Access(v). The point of this subroutine is to restructure the

entire tree. Access(v) causes the preferred paths to change. The main point is to make the path from

root to v preferred.

We need to ”clip-off” all the nodes lower than v. The natural way to do this is to splay v to the root

of its auxiliary tree. Thus all the nodes higher than v are in the left subtree, and all the nodes lower than

v are in the right subtree. Then we can ”clip-off” v’s right child. Then we set the path parent pointer of

v’s right child to be pointing to v. By definition of preferred child, v has no preferred child then. So the

right child of v should be null.

We then use a loop to conduct other preferred child changes. What we do in the loop is to ”clip-off”

the previous preferred child and switch its preferred child to the new one. So we first set w to be the

path parent pointer of v, and then we splay w to the root. After that we ”clip-off” the previous preferred

child of w and switch it to v.

Pseudocode:

Access(v)

3



• Splay v in its auxiliary tree and then ”clip-off” right child

– path-parent(right(v))← v

– parent(right(v))← φ

– right(v)← φ

• Loop until we reach the root:

– w ← path-parent(v)

– Splay w

– Switch w’s preferred child:

∗ path-parent(right(w))← w

∗ parent(right(w))← φ

∗ right(w)← v

∗ parent(v)← w

∗ path-parent(v)← φ

– v ← w

3.2.2 Cut

To cut an edge between v and its parent, we first run Access(v) and then disconnect it with its left child.

Pseudocode:

Cut(v)

• Access(v)

• parent(left(v))← φ

• left(v)← φ

3.2.3 Path Aggregate

We run Access(v) first. And then since each node maintains the values such as min, max, and sum, we

can easily return the needed value directly.

Pseudocode:

PathAggregate(v)

• Access(v)

• return v.subtree-sum

4



3.2.4 Link

We run Access() in both trees and make w a left child of v.

Pseudocode:

Link(v,w)

• Access(v)

• Access(w)

• left(v)← w

• parent(w)← v

4 Analysis

As one can see from the pseudo code, all operations are doing at most logarithmic work (amortized,

because of the splay call in find root) plus an access. Thus it is enough to bound the run time of access.

First we show an O(lg2 n) bound.

4.1 An O(lg2 n) Bound

From accesss pseudo code we see that its cost is the number of iterations of the loop times the cost of

splaying. We already know from previous lectures that the cost of splaying is O(lg n) amortized (splaying

works even with splits and concatenations). Recall that the loop in access has O(# preferred child

changes) iterations. Thus to prove the O(lg2 n) bound we need to show that the number of preferred

child changes is O(lg n) amortized. In other words the total number of preferred child changes is O(m lg n)

for a sequence of m operations. We show this by using the Heavy-Light Decomposition of the represented

tree.

4.2 Heavy-light decomposition

The Heavy-Light decomposition is a general technique that works for any tree (not necessarily binary).

It calls each edge either heavy or light depending on the relative number of nodes in its subtree.

Let size(v) be the number of nodes in vs subtree (in the represented tree).

Definition An edge from vertex parent(v) to v is called heavy if size(v) > 1
2size(parent(v)), and other-

wise it is called light.

Furthermore, let light-depth(v) denote the number of light edges on the root-to-vertex path to v.

Note that light-depth(v) lgn because as we go down one light edge we decrease the number of nodes in

our current subtree at least a factor of 2. In addition, note that each node has at most one heavy edge

to a child, because at most one child subtree contains more than half of the nodes of its parents subtree.

5



There are four possibilities for edges in the represented tree: they can be preferred or unpreferred and

heavy or light.

4.3 Proof of the O(lg2 n) Upper Bound

The amortized power of splay

To bound the number of preferred child changes, we do Heavy-Light decomposition on represented

trees. Note that access does not change the represented tree, so it does not change the heavy or light

classification of edges. For every change of preferred edge (possibly except for one change to the preferred

edge that comes out of the accessed node) there exists a newly created preferred edge. So, we count the

number of edges which change status to being preferred. Per operation, there are at most lg n edges which

are light and become preferred (because all edges that become preferred are on a path starting from the

root, and there can be at most lg n light edges on a path by the observation above). Now, it remains to

ask how many heavy edges become preferred. For any one operation, this number can be arbitrarily large,

but we can bound it to O(lg n) amortized. How come? Well, during the entire execution the number of

events heavy edge becomes preferred is bounded by the number of events heavy edge become unpreferred

plus n− 1 (because at the end, there can be n− 1 heavy preferred edges and at the beginning the might

have been none). But when a heavy edge becomes unpreferred, a light edge becomes preferred. Weve

already seen that there at most lg n such events per operation in the worst-case. So there are lg n events

heavy edge becomes unpreferred per operation. So in an amortized sense, there are lg n events heavy

edge becomes preferred per operation (provided n−1/m is small, i.e. there is a sufficiently large sequence

of operations).

4.4 The O(lg n) Bound

We prove the O(lg n) bound by showing that the cost of preferred child switch is actually O(1) amortized.

From accesss pseudo code one can easily see that its cost is

O(lgn) + (cost of preferred child switch ∗#preferred child switches) (1)

From the above analysis we already know that the number of preferred child switches is O(lg n), thus

it is enough to show that the cost of preferred child switch is O(1). We do it using the potential method.

Let s(v) be the number of nodes under v in the tree of auxiliary trees. Then we define the potential

function φ =
∑

v lg(s(v)). From our previous study of splay trees, we have the Access theorem, which

states that: cost(splay(v)) ≤ 3(lg s(u)− lg s(v)) + 1 where u is the root of vs auxiliary tree.

Now note that splaying v affects only values of s for nodes in vs auxiliary tree and changing vs pre-

ferred child changes the structure of the auxiliary tree but the tree of auxiliary trees remains unchanged.

Therefore, on access(v), values of s change only for nodes inside vs auxiliary tree. Also note that if w is

the parent of the root of auxiliary tree containing v, then we have that s(v) ≤ s(u) ≤ s(w). Now we can

use this inequality and the above amortized cost for each iteration of the loop in access.

6



The summation telescopes and is less than

3(lg s (root of represented tree))− lg(s(v)) +O(# preferred child changes) (2)

which in turn is O(lg n) since s(root) = n. Thus the cost of access is thus O(lg n) amortized as desired.

To complete the analysis we resolve the worry that the potential might increase more than O(lg n)

after cutting or joining. Cutting breaks up the tree into two trees thus values of s only decrease and thus

φ also decreases. When joining v and w, only the value of s at v increases as it becomes the root of the

tree of auxiliary trees. However, since s(v) ≤ n, the potential increases by at most lg s(v) = lg n. Thus

increase of potential is small and cost of cutting and joining is O(lg n) amortized.

7


