
COMS E6998-8: Advanced Data Structures (Spring’19) Jan 24, 2019

Lecture 1: Models of Data Structures

Instructor: Omri Weinstein Scribes: Sihyun Lee

1 Course Overview

The study of data structures is one of the earliest disciplines in computer science. Since every implemen-

tation of an algorithm depends on the data structure they operate on, understanding data structures is

even more fundamental than studying algorithms. This course aims to understand limits and strengths

of various data structures.

The course will focus on four main types of data: integers, geometry, graphs, and strings. The three

main themes throught the course would be upper bounds, lower bounds, and computational models.

We will explore computational models on data structures in a complexity theoretic viewpoint. However,

there are some problems that have information-theoretic lower bounds that do not rely on assumptions in

complexity theory (such as P6=NP); there are some interesting breakthrough for these problems that set

a low upper bound. While many problems have gaps between upper and lower bounds, some problems

to be covered in class have them asymptotically equal.

2 Types of Data Structures

We focus two main types of data structures: static and dynamic. We briefly mention more special types

of data structures: offline and temporal.

• Static Data Structures are data structures that are given all the data in advance. It assumes that

all the data given to it will not be modified. Our goal is to preprocess data efficiently so that certain

queries about the given dataset could be answered quickly. For these data structures, we are concerned

most about the trade-off between space and time complexity.

Example 1: Graphs. We consider graphs, more specifically, road networks of n vertices and m edges.

Given two points in the network, we want to preprocess data so that we can efficiently compute the

distance between two points when queried. One way of storing data is to precompute all answers. This

way, we can answer queries in O(1) time, but to store all of the pairwise distances we will need O(n2)

space. Another way is to store the entire graph. This way, we only need O(m + n) space, but answering

each query takes O(m + n log n) time using Dijkstra’s Algorithm.

Example 2: Geometric Data Structures. The first problem we discuss is nearest neighbor search.

Say that we are given n points X = {x1, ...xn} in Rd. Our goal is to preprocess the data into small

memory so that, given a query point q, the closest point in X to q. The naive way to solve this is to

store the answers for all choices of q. There are infinitely many choices, so we instead divide the entire

1



space into “balls” of side length r, and this approach will require O((1/r)d) space and suffers a “curse of

dimensionality”. Another approach is to store all points into a database and scan the entire database on

each query, which takes O(n) time and might not be scalable when there are large amounts of data. We

will see that, by allowing approximations, this problem can be tackled in linear space and O(
√
n) time.

We will also discuss a similar problem called orthogonal range queries, which is similar to the above

but we specify intervals in each dimension and want to estimate how much data falls into the “box” de-

fined by the intervals. This problem turns out to be more tractable than the nearest neighbors problem

because it is easier to deal with “boxes” than “balls”. Problems like this has practical applications in

estimating a distribution. For example, Amazon uses these types of techniques to estimate market sizes

of certain segments.

• Dynamic Data Structures are data structures that evolve over time. The input is not fixed in

advance and the data structure should allow modification (i.e. update) of the data. For dynamic data

structures, we are interested in the trade-off between the update time and the query time.

Remark. Space is less of a concern, since it is already captured by the update time: if the maximum

update time for a data structure is tu we can bound the space s used by the data with s ≤ n · tu. (Later

on, when we cover data structures for strings, we will consider all three since there is one that achieves

surprisingly high efficiency in all aspects.)

Obviously, dynamic data structures are much more applicable, while static data structures are easier

to come up with. We will try to dynamize static data structures. More specifically, we will discuss black-

box dynamization, where we provide a general framework for dynamizing without knowing the exact

details of the static data structure.

Example 3: Dynamic Prefix-Sums. Say that we run a company database that stores the salary and

hire year of all of its employees. On a query, we receive a year t and return the total salary of people

hired on or before t. Every day people get hired, fired, or get their pay changed, so we need a dynamic

data structure.

The naive solution is to group all the employees based on their hire year, and list the groups in an

array. When a query is made, we iterate through the array, taking the sum within each group. Here,

update takes worst case O(n) time, where n is the number of years concerned.

Another solution is to create a self-balancing binary tree (e.g. a red-black tree) where the key to each

node is the hire year, and each node is augmented with the list of people hired that year, the sum of their

salaries, and the sum of salaries in all years on the subtree rooted on it. The update time is O(log n)

since we have to traverse the path from the root to the target node and update all nodes in the path.

Given a query year t, we can easily find the sum of salaries including and before recursively: starting

from the root, if the root has key greater than t, we can ignore the root and the right subtree, and we just

recursively query the left subtree. Otherwise, we can return the sum of (1) the sum of salaries in the left

subtree, (2) the salary of the root node, and (3) the sum of salaries in the right subtree, recursively found.

Example 4: Optimality of Prefix-Sums. In the above example, we proposed a O(log n) update time,

O(log n) query time algorithm for the problem. We will soon prove that we cannot improve on this result

for a 1-dimensional prefix-sum problem (where we have only one dimension that determines whether a

person’s salary should count or not).

2



What if we have to keep track of both the hire year and the birth year, and our queries ask for a sum

over intervals in both information? This is a 2-dimensional prefix-sum problem, and a similar bound has

been shown. However, for 3 or more dimensions, there is no result proven to be tight.

• Other Data Structures. An offline (or batch) data structure is a static data structure but without a

preprocessing step. The online data structure mentioned above takes input step-by-step, while an offline

data structure can access the entire dataset before preprocessing. Therefore, it is stronger than a static

data structure; however, it is unable to make updates outside the originally given data, so it is weaker

than dynamic data structures.

Temporal data structures are ones that can “time travel”: a user can make queries about specific past

versions of the data. Since the requirement is very demanding, not much is known about them.

3 Computational Models of Data Structures

The same way we had a discussion on Turing Machines and their variants for an evaluation of com-

putational complexity, it is essential for us to define the exact computational models regarding data

structures to make well-defined statements about time and space bounds. The conversation on different

computational models of data structures have been inspired by the development of hardware and memory

architectures.

• Transdichotomous RAM Model. Here, the memory address is considered a finite array divided

into w-bit words; this model assumes that w ≥ min{lg s, lg n} where s is the total memory space used

and n is the amount of data that is input. This assumption enables us to index all points of the input

data and the memory space.

• Word-RAM Model. This is the typical model for proving upper bounds and considered a realis-

tic representation of modern computer architecture. The characteristics of the Transdichotomous RAM

Model carries on, yet on each of these words, arithmetic operations such as +,−,×,÷ and logical oper-

ations such as |,&,̂ , bit-shifting, and comparing are considered constant-time operations. Depending on

which operations are considered constant-time, there may be similar variants to this model. An example

is the arithmetic RAM model where multiplication is not considered a constant-time operation since it is

obviously more complicated than addition.

• Pointer-Machine Model. Here, a data structure is consisted of nodes with a constant fan-out of

pointers. All points in memory can be accessed only by following a list of pointers. Since there is no

random-access memory given here, this is considered a weaker model than any RAM Model. Non-array

types of data structures that we saw in a typical data structures class fall under this category: linked

lists, heaps, binary search trees. The next two lectures will cover more advanced tree models and some

versions of pointer machines.

The pointer-machine model is weaker than the Word-RAM model, so when we are showing upper

bounds for data structures they can be useful. Can we introduce a stronger model, so that proving a

lower bound in this model in turn proves one for computers universally? We use the fact that, in any

computer architecture, the CPU and memory are isolated and it takes time for the CPU to access memory.

3



• Cell-Probe Model. Here, we completely ignore the time it takes for the CPU to perform operations

on memory it has already loaded. The number of loading requests is the only computational cost we

consider. Formally, a static (s, t)-data structure in the Cell-Probe model defined by the following: the

input data is preprocessed into a space of s different cells (i.e. words). In every query, we can load up to

t words and announce the answer based on the loaded cells. For dynamic data structures, we can define

a dynamic (tu, tq)-data structure. In every query, we can load tq cells; in every update, we can load tu
cells. Our objective here is to find upper and lower bounds for max{tu, tq}. The cell-probe model will be

used in proving information-theoretic lower bounds for computation.

4 Performance Guarantees

We finally discuss some ways the performance of a data structure is evaluated. The standard guarantee

we saw in an introductory data structures class is worst-case: we assume that an adversary can choose

an input that maximizes the running time of our algorithm. However, this is sometimes not very useful

when worst-case instances do not appear too often in practice.

A useful guarantee is amortized runtime. Here, we consider the total number of operations for a

sequence of operations. A classic example is the binary counter. The worst-case runtime of incrementing

a counter by 1 is O(n), because if our number is all 1’s we have to change all the bits except the leading

1. However, it can be shown that to increment from 0 to n, we make a total of at most 2n changes

to the individual bits. Since n increments can be done within 2n operations, we can say that adding

1 to a counter is a constant-time operation. (Details can be found in Chapter 17.1 in Introduction to

Algorithms by Cormen et al.) Amortized analysis will be a core technique for analyzing algorithms used

in this course.

Another useful guarantee is expected runtime. This is different from amortized analysis: amortized

analysis takes the average over a sequence of operations for a deterministic algorithm, while expected

analysis takes the average over a distribution of random choices that a randomized algorithm makes.

For example, randomized quicksort makes O(n log n) operations in expectation, while non-randomized

quicksort makes O(n2) operations in the worst case.

We also consider instance-optimal data structures. The exact notion of instance-optimality will be

covered later, but the intuition is that the asymptotic runtime is uniform for any input. For example, it

is unreal to achieve instance-optimality for sorting since if we have an already sorted array it takes O(n)

time to check, yet any comparison-based sorting algorithm should have average-case runtime Ω(n log n).

In the next two lectures, we give examples of instance-optimal trees.

5 Advanced BSTs and Dynamic Optimality

This section is a preview of what we will see in the next two weeks. The motivating question is to find

an instance-optimal integer binary search tree (BST). First, we set the predecessor search problem

as the key problem for BSTs: given a query integer x, we want to return the greatest integer in the data

structure not greater than x.

The easy way to start is to use a balanced BST. This is an efficient data structure with update and

query time both O(log n). However, this is not instance-optimal: consider an extreme sequence of queries

4



that repeatedly sends the number in the root of the tree. We can make an adversarial argument that, in

terms of worst-case analysis, we cannot make a tree that is instance-optimal compared to this sequence

of queries. In the next lecture we cover Splay Trees, which is conjectured to have achieved instance

optimality. The idea of this tree is to modify the tree based on the queries made.

5


