
Omri Weinstein Homework 1 COMS6998, March 6, 2019

Due: March 9th (Saturday), 11:59pm, submit to courseworks.
You may use “standard” arguments without a formal proof—either cite from class or add one
sentence showing the main idea.

Problem 1: Van Emde Boas insertion

Recall the recursive definition of vEB trees discussed in class. Here’s the pseudo code for the
Search operation Predecessor(x, S) that returns x’s predecessor within the set S:

procedure Predecessor(x, S)
if x ≤ S.min then

return ∅
if x > S.max then

return S.max
if low(x) > S[high(x)].min then

return high(x)
√
u+ Predecessor(low(x), S[high(x)])

else
i← Predecessor(high(x), S.summary)
return i ·

√
|S|+ S[i].max

Given this code, show that this data structure facilitates dynamic updates of inserting keys to S
in worst-case O(lgw) = O(lg lg u) time, by completing the pseudo code for Insert(x, S).

Problem 2: Fast predecessor search for monotone-interval sets

1. (Evenly-spaced intervals) Suppose we are given set of evenly spaced numbers
S = x1 ≤ · · · ≤ xn, i.e. such numbers that there exists a k for which it holds for all
i = 1, . . . , n− 1 : k ≤ xi+1 − xi ≤ 2k. Build a linear-space static data structure that answers
Predecessor queries on such sequences in t = O(1) time in the RAM model with word
size w = O(log n).
(You may use as a black-box the existence of a Dictionary data structure, that stores any
vector x ∈ Σn with d nonzero entries using space O(d lg |Σ| lg n) and retrieves xi in constant
time t = O(1)).

2. (Increasing intervals) Do the same for increasing intervals sets x1 ≤ · · · ≤ xn, in which, for
all i = 1, . . . , n− 2 : xi+1 − xi ≤ xi+2 − xi+1. (Hint: Reduce to (1) using fusion trees).

Problem 3: Predecessor applications

Show how to statically solve following problems using Predecessor or Successor data
structure.

1. (1D range reporting) Suppose that for a given list of integers x1, . . . , xn you want to answer
such queries: given an interval [a, b] return all xi ∈ [a, b]. s = O(n) space,

1

Omri Weinstein Homework 1 COMS6998, March 6, 2019

t = O(log log u+ occ) time, where occ is the number of integers in the answer and all
xi ∈ {1, . . . , u}.

2. (Subsequence search) Given a string T ∈ Σ∗, for any string P ∈ Σ∗ determine whether T
contains P as a subsequence, i.e. whether there is an increasing sequence of integers
i1 < . . . < i|P |, such that Pj = Tij for all j ∈ {1, . . . , |P |}. s = O(|T |+ |Σ|) space,
t = O(|P | log log |T |) time.

Problem 4: O(1) predecessor search for near-linear universes

Recall that Van Emde Boas trees solve Predecessor search in a universe of size u with n keys in
t = O(log log u) time and linear space s = O(n) words, assuming word size w = O(log u).
We will now show that this running time can be slightly improved for small universes [u].
Specifically, show that using s words of space (where word size is w bits), we can achieve static
search time of t = O(log log u−logn

a), where a := log(s/n) + logw. Conclude that for near-linear
universes u = n · polylog(n), Predecessor search can be done with s = O(n) space, and constant
t = O(1) running time (with the standard word-size w = O(log n)).
Hint: Recall that in each round of the vEB recursion, the key-length of elements gets cut by
factor 2 (from k to k/2, starting at k = log u). First show that we can stop the vEB recursion once
k drops below a (indeed, what trivial thing can we do once k < a?). Conclude that only log(w/a)
rounds of recursion are needed (rather than logw). Use this simple idea together with simple
tabulation, to get constant-time search with linear space for small universes u = n · polylog(n). If
you use this hint without proving it, you will still get partial credit for the problem.

2

